The unique N-terminus of R-ras is required for Rac activation and precise regulation of cell migration.
نویسندگان
چکیده
The Ras family GTPase, R-Ras, elicits important integrin-dependent cellular behaviors such as adhesion, spreading and migration. While oncogenic Ras GTPases and R-Ras share extensive sequence homology, R-Ras induces a distinct set of cellular behaviors. To explore the structural basis for these differences, we asked whether the unique N-terminal 26 amino acid extension of R-Ras was responsible for R-Ras-specific signaling events. Using a 32D mouse myeloid cell line, we show that full-length R-Ras activates Rac and induces Rac-dependent cell spreading. In contrast, truncated R-Ras lacking its first 26 amino acids fails to activate Rac, resulting in reduced cell spreading. Truncated R-Ras also stimulates more beta3 integrin-dependent cell migration than full-length R-Ras, suggesting that the N-terminus may negatively regulate cell movement. However, neither the subcellular localization of R-Ras nor its effects on cell adhesion are affected by the presence or absence of the N-terminus. These results indicate that the N-terminus of R-Ras positively regulates specific R-Ras functions such as Rac activation and cell spreading but negatively regulates R-Ras-mediated cell migration.
منابع مشابه
H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells.
Human tumors frequently exhibit constitutively activated Ras signaling, which contributes to the malignant phenotype. Mounting evidence suggests unique roles of the Ras family members, H-Ras, N-Ras and K-Ras, in normal and pathological conditions. In an effort to dissect distinct Ras isoform-specific functions in malignant phenotypic changes, we previously established H-Ras- and N-Ras-activated...
متن کاملRLIP76 (RalBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration
The Ras family of small GTPases regulates cell proliferation, spreading, migration and apoptosis, and malignant transformation by binding to several protein effectors. One such GTPase, R-Ras, plays distinct roles in each of these processes, but to date, identified R-Ras effectors were shared with other Ras family members (e.g., H-Ras). We utilized a new database of Ras-interacting proteins to i...
متن کاملR-Ras controls membrane protrusion and cell migration through the spatial regulation of Rac and Rho.
Although it is known that the spatial coordination of Rac and Rho activity is essential for cell migration, the molecular mechanisms regulating these GTPases during migration are unknown. We found that the expression of constitutively activated R-Ras (38V) blocked membrane protrusion and random migration. In contrast, expression of dominant negative R-Ras (41A) enhanced migrational persistence ...
متن کاملR-Ras and Rac GTPase Crosstalk Regulates Hematopoietic Progenitor Cell Migration, Homing and Mobilization Running title: R-Ras in hematopoietic progenitor migration
Adult hematopoietic progenitor cells (HPCs) are maintained by highly coordinated signals in the bone marrow. The molecular mechanisms linking intracellular signaling network of HPCs with their microenvironment remain poorly defined. The Rho family GTPase Rac1/Rac2 has previously been implicated in cell functions involved in HPC maintenance, including adhesion, migration, homing, and mobilizatio...
متن کاملThe distinct roles of Ras and Rac in PI 3-kinase-dependent protrusion during EGF-stimulated cell migration.
Cell migration involves the localized extension of actin-rich protrusions, a process that requires Class I phosphoinositide 3-kinases (PI 3-kinases). Both Rac and Ras have been shown to regulate actin polymerization and activate PI 3-kinase. However, the coordination of Rac, Ras and PI 3-kinase activation during epidermal growth factor (EGF)-stimulated protrusion has not been analyzed. We exami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2005